Project description
Searching for elusive Majorana fermions on silicon-germanium heterostructures
In 1928, physicist Paul Dirac predicted that every fundamental particle in the Universe has an identical twin but with opposite charge. A fundamental question arises: what happens if a particle is its own antiparticle? Ettore Majorana predicted their existence and evidence has been put forward for the existence of such a state of matter in the form of quasiparticle excitations in hybrid semiconductor-superconductor devices. Recent experiments have found signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Research activities have so far concentrated on planar InAs and InSb nanowires. Funded under the Marie Skłodowska-Curie programme, the MaGnum project will look for Majorana bound states in Ge/SiGe heterostructures. These heterostructures should facilitate the detection of the elusive Majorana bound states.
Objective
Each particle has its antiparticle, and upon bringing them in close vicinity, they annihilate (they disappear). A fundamental question arises: what happens if a particle is its own antiparticle? Ettore Majorana predicted their existence and evidence has been put forward for the existence of such a state of matter in the form of quasiparticle excitations in hybrid semiconductor-superconductor devices. Research activites so far has concentrated on InAs nanowires, planar InAs and InSb nanowires. Theory suggests to look for Majorana bound states (MBS) in Germanium and I propose to use a novel yet promising material system, namely a Germanium/Silicon-Germanium heterostructure, to provide evidence for the topological state of matter leading to Majorana bound states (MBS). Using Ge/SiGe brings the advantage of a long mean free path, which will allow for a larger spatial separation of the MBS and facilitate the long anticipated but yet elusive detection of correlation of two MBS. Additionally, the planar geometry brings the possibility to couple the MBS to their environment, which will be important for their usage as topologically protected quantum bits for quantum computation. I propose to show step-by-step the ingredients necessary for a topological phase transition resulting in MBS. In particular, I will follow these steps: I will collaborate with G. Isella's group to develop a highly mobile two-dimensional hole gas and make it accessible for magneto-transport measurements. I will further confine the holes into a one-dimensional wire with tunable tunneling barriers at each end. I will test the presence of a strong spin-orbit interaction by measuring helical transport. I will induce superconducting order by coupling the wire to NbTiN contacts. Finally, I will test the presence of MBS with tunneling conductance measurements and use a proper geometry to show evidence of the correlation of two MBS at each end of the wire.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences theoretical physics particle physics
- natural sciences mathematics pure mathematics geometry
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3400 KLOSTERNEUBURG
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.