Project description
Efficient mooring system integrity management
Mooring systems are critical components in floating offshore wind turbines, which are monitored through costly and unreliable load cells. In addition, the failure rate of mooring systems in the oil and gas sector appear to be several orders of magnitude greater than industry targets, showing a high degree of uncertainty in terms of reliability and costs. To address this issue, the EU-funded MooringSense project aims to develop an efficient risk-based integrity management strategy for mooring systems based on inexpensive and reliable online monitoring technology. It will achieve this by developing an affordable smart motion sensor, a mooring system digital twin model, structural health monitoring techniques and control strategies for mooring condition management at turbine and farm levels. The project’s achievements will lead to higher efficiency and lower operational costs for floaters' mooring lines.
Objective
The project MooringSense aims at reducing operational costs and increasing efficiency through the development of an efficient risk-based integrity management strategy for mooring systems based on an affordable and reliable on-line monitoring technology. The proposed solution will be enabled by the development of a low-cost smart sensor for FOWT motion monitoring, a Mooring System Digital Twin (DT) model, Structural Health Monitoring (SHM) techniques, as well as control strategies for mooring condition management tolerance at turbine and farm levels.
The monitoring technology proposed will replace the existing unreliable and expensive monitoring systems based on load cells in the mooring lines by a combination of a robust motion sensor and numerical models. In addition, measurements will enable the development of more efficient operation and maintenance strategies, including optimized control.
MooringSense’s consortium strength covers the full value chain, with a proven track record in the Offshore Wind and Oil and Gas Industries, and supported by experienced research institutions, the project will start from current partner’s technology to develop an innovative cost-efficient mooring integrity management enabled by Global Navigation Satellite System technology, coupled numerical modelling, control engineering and machine learning, with both increased efficiency of the overall resulting system as well as reduced operational expenditures, when compared with known incumbent alternatives.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- social sciences social geography transport navigation systems satellite navigation system global navigation satellite system
- engineering and technology mechanical engineering vehicle engineering aerospace engineering satellite technology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors smart sensors
- engineering and technology environmental engineering energy and fuels renewable energy wind energy
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering control engineering
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.3.2. - Low-cost, low-carbon energy supply
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-LC-SC3-2018-2019-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
39011 Santander
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.