Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Structural basis of controlling the membrane attack complex

Project description

Profiling a killer to minimise bystander damage

Complement is a system of more than 20 proteins circulating in the blood and tissue fluids. Normally inactive, these proteins become sequentially activated in a proteolytic enzyme cascade in response to recognition of pathogens. The end effect is activation of the membrane attack complex (MAC) that forms cytotoxic pores on the membrane surfaces of microbes, lysing the pathogenic cells. Uncontrolled MAC activity can result in collateral damage to healthy cells, but therapeutic targets to control MAC activity require detailed understanding of MAC structure and function – knowledge missing until recently. Now, cryoelectron microscopy studies have elucidated the interaction between MAC and the membrane targets as well as the entire transmembrane pore structure with atomic resolution. The scientists who carried out this pioneering work are looking for the control mechanisms in the context of the EU-funded Controlling MAC project.

Objective

Structural basis of controlling the membrane attack complex

Complement is a fundamental component of the human immune system; central to the battle between hosts and pathogens. The membrane attack complex (MAC) is the direct killing arm of complement that acts by forming large pores in target cell membranes. Uncontrolled activation results in by-stander damage, which can have devastating consequences for host cells and impact inflammatory pathologies, thrombosis and cancer. Understanding how MAC activity is controlled on human cells during an immune response is a major unresolved question.

My lab has pioneered the use of cryo electron microscopy (cryoEM) to investigate the molecular mechanism underpinning MAC assembly. We have defined the stoichiometry of the complex and identified interaction interfaces that determine its sequential assembly mechanism. Recent data from my lab has now revealed atomic resolution information for the complete transmembrane pore. Results from my lab have provided a molecular and biophysical basis for MAC pore formation, which has led to a general mechanism for how proteins cross lipid bilayers.

Here, the goal is to understand the structural basis for how MAC activity is controlled by (i) cell surface receptor CD59, (ii) removal of pores from the plasma membrane, and (iii) clearance of assembly by-products from the plasma. MAC interacts with a defined set of cellular proteins through these three pathways. In this proposal, we will integrate structural information that spans cellular to molecular length scales. Recent technical advances in cryoEM, cryo soft X-ray tomography (cryoSXT) and correlated fluorescence imaging make it now possible to address how MAC activity is controlled in and around the plasma membrane. In doing so, we will answer a longstanding question in immunology and open new research directions exploring fundamental cellular processes. These results will provide a foundation for the development of novel therapeutics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-COG

See all projects funded under this call

Host institution

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 999 990,00
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 999 990,00

Beneficiaries (1)

My booklet 0 0