Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Black hole growth fuelled by counter-rotating gas

Project description

Uncovering the mechanism that fuels the growth of active galactic nuclei

Active galactic nuclei are amongst the most spectacular astrophysical events in the sky. They are small regions at the galaxy centres that emit prodigious amounts of energy and are powered by gas accretion onto the black holes that usually harbour the centres of supermassive galaxies. Funded by the Marie Skłodowska-Curie Actions programme, the CR-GAS project plans to uncover the physical conditions in the host galaxy that trigger or halt this black hole feeding process. Researchers will study counter-rotating structures in galaxies to determine the gas transport mechanism and investigate whether counter-rotation itself promotes gas flow onto the black hole.

Objective

Supermassive black holes are ubiquitous in the centres of galaxies. They remain largely invisible to our probes, except during their active phases (AGN), when gas is accreted onto the black hole. The energy output of AGN is thought to be able to regulate the growth of galaxies and supermassive black holes. However, we still do not understand how gas is transported to fuel the AGN. One of the outstanding challenges in galaxy evolution is to uncover what physical conditions in the host galaxy trigger or halt the black hole feeding process. In this Global Fellowship project I will make significant advances to solve the problem of AGN fuelling with an innovative approach. I propose to use counter-rotating structures in galaxies to determine: 1) how gas is transported, and 2) if counter-rotation itself promotes the flow of gas to the black hole. Counter-rotation is an unambiguous dynamical tracer that will allow me to unveil for the first time the path of gas from the large scale of the galaxy to the central black hole, thereby determining what physical mechanisms transport gas. I will carry out the project at two world renowned institutions: the University of California Los Angeles and the University of Copenhagen. During the fellowship I will acquire broad skills on photometry analysis and comparison samples to combine with my current expertise on state-of-the-art data analysis and dynamical models to reach the science goals of the project. I will receive additional training on proposal and grant application writing to enhance my career opportunities at the end of the fellowship. On the incoming phase I will bring my acquired expertise and access to a network of international collaborators to Europe, which is important for European institutes to maximise their returns from cutting-edge facilities and instruments with focus on black holes, such as the Event Horizon Telescope and GRAVITY.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

KOBENHAVNS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 268 921,92
Address
NORREGADE 10
1165 KOBENHAVN
Denmark

See on map

Region
Danmark Hovedstaden Byen København
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 268 921,92

Partners (1)

My booklet 0 0