Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Neural Video Processing and Streaming for Real-time Traffic Monitoring

Descripción del proyecto

Inteligencia artificial para monitorizar el tráfico en tiempo real

La rápida urbanización y el incremento continuo de las cifras de vehículos ha aumentado la preocupación por la seguridad de las carreteras. Como resultado, se han instalado sistemas de monitorización del tráfico en tiempo real para ayudar a los operadores para el control del tráfico y para situaciones de emergencia. El proyecto VISIONS, financiado con fondos europeos, desarrollará un sistema de monitorización del tráfico mediante transmisión de vídeo de alta calidad en ciudades inteligentes basado en métodos de inteligencia artificial (IA) aplicados al procesamiento y la transmisión de vídeo. Se tendrán en cuenta las características de los sistemas visuales de los humanos a la hora de determinar la asignación de la calidad del vídeo con el fin de limitar la capacidad necesaria para la transmisión de vídeo. Se implementará un método avanzado basado en redes neuronales profundas para permitir la reproducción y la transferencia de vídeo a resoluciones menores y se planeará un nuevo sistema de adaptación de la tasa de bits basado en el aprendizaje de refuerzo para garantizar la calidad de la experiencia.

Objetivo

With the rapid development of urbanization and continuous increase of vehicles on roadways, Intelligent Transportation Systems (ITS) play a key role in revolutionizing the way people commute. To make our cities safer and smarter, real-time traffic monitoring systems are deployed to help operators with observing traffic flows and identifying emergency situations.

This project aims to achieve real-time traffic monitoring with high-quality video transmission in smart cities, leveraging the emerging Artificial Intelligence methods in video processing and video streaming. Firstly, the features of human visual systems will be referred on video quality allocation to reduce the required bandwidth for video transmission. Next, an innovative method for end-to-end video processing based on Deep Neural Networks will be developed to allow the video rendering and streaming at a lower resolution and also restore/improve the quality at the user ends. Finally, a new bitrate adaption scheme based on Reinforcement Learning will be designed to accommodate the unexpected network dynamics, guaranteeing the Quality-of-Experience to be perceived by users. The expected outcome can promote safer and more efficient travel for millions of users in Europe and billions of users all over the world. Moreover, the results of this project can be used in other multimedia applications, such as cloud virtual reality, distance education, smart transportation, and healthcare where video processing and video streaming are needed.

To broaden the fellow’s knowledge horizon, a series of research, training, and knowledge transfer activities are planned. The new knowledge and skills imparted in these activities will further promote his academic portfolio and significantly enhance his career prosperity. The project will also play a solid foundation for the long-term and wide-range collaborations and eventually lead to more extensive impact of project results, from which both EU and China will benefit.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: https://op.europa.eu/es/web/eu-vocabularies/euroscivoc.

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) H2020-MSCA-IF-2019

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

THE UNIVERSITY OF EXETER
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 224 933,76
Dirección
THE QUEEN'S DRIVE NORTHCOTE HOUSE
EX4 4QJ Exeter
Reino Unido

Ver en el mapa

Región
South West (England) Devon Devon CC
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 224 933,76
Mi folleto 0 0