Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Neural Video Processing and Streaming for Real-time Traffic Monitoring

Descrizione del progetto

IA per il monitoraggio del traffico in tempo reale

La rapida urbanizzazione e l’aumento costante del numero di veicoli hanno sollevato preoccupazioni per la sicurezza stradale. Di conseguenza, sono stati installati sistemi di monitoraggio del traffico in tempo reale per assistere gli operatori nel controllo del traffico e in situazioni di emergenza. Il progetto VISIONS, finanziato dall’UE, svilupperà un sistema di monitoraggio del traffico in tempo reale con trasmissione video di alta qualità in città intelligenti basato su metodi di intelligenza artificiale nell’elaborazione e nello streaming video. Le caratteristiche dei sistemi visivi umani saranno indicate sull’allocazione della qualità video per limitare l’intervallo necessario per la trasmissione video. Verrà implementato un metodo avanzato basato su reti neurali profonde per consentire il rendering e lo streaming video a risoluzioni più basse e verrà pianificato un nuovo sistema di adattamento bitrate basato sull’apprendimento per rinforzo per garantire la qualità dell’esperienza.

Obiettivo

With the rapid development of urbanization and continuous increase of vehicles on roadways, Intelligent Transportation Systems (ITS) play a key role in revolutionizing the way people commute. To make our cities safer and smarter, real-time traffic monitoring systems are deployed to help operators with observing traffic flows and identifying emergency situations.

This project aims to achieve real-time traffic monitoring with high-quality video transmission in smart cities, leveraging the emerging Artificial Intelligence methods in video processing and video streaming. Firstly, the features of human visual systems will be referred on video quality allocation to reduce the required bandwidth for video transmission. Next, an innovative method for end-to-end video processing based on Deep Neural Networks will be developed to allow the video rendering and streaming at a lower resolution and also restore/improve the quality at the user ends. Finally, a new bitrate adaption scheme based on Reinforcement Learning will be designed to accommodate the unexpected network dynamics, guaranteeing the Quality-of-Experience to be perceived by users. The expected outcome can promote safer and more efficient travel for millions of users in Europe and billions of users all over the world. Moreover, the results of this project can be used in other multimedia applications, such as cloud virtual reality, distance education, smart transportation, and healthcare where video processing and video streaming are needed.

To broaden the fellow’s knowledge horizon, a series of research, training, and knowledge transfer activities are planned. The new knowledge and skills imparted in these activities will further promote his academic portfolio and significantly enhance his career prosperity. The project will also play a solid foundation for the long-term and wide-range collaborations and eventually lead to more extensive impact of project results, from which both EU and China will benefit.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2019

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

THE UNIVERSITY OF EXETER
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 224 933,76
Indirizzo
THE QUEEN'S DRIVE NORTHCOTE HOUSE
EX4 4QJ Exeter
Regno Unito

Mostra sulla mappa

Regione
South West (England) Devon Devon CC
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 224 933,76
Il mio fascicolo 0 0