Project description
Realising the potential of quantum computing in a photonics computational device
Quantum computers harness the magical possibilities of quantum mechanics to significantly enhance computing power. Their potential to surpass classical computation, demonstrating so-called quantum supremacy, has yet to be realised. Recently, the study of computational problems that produce samples from probability distributions (quantum sampling problems or random circuit sampling) has highlighted a potential path forward to demonstrate quantum supremacy. Random circuits quickly develop long-range entanglement, making them very difficult to simulate with classical algorithms. One promising way to achieve useful quantum computation is by using a hybrid computational model combining classical and quantum processes. The EU-funded PHOQUSING project plans to implement such a hybrid computational system based on integrated cutting-edge photonics, placing Europe at the forefront of a competitive and economically important emerging field.
Objective
Randomness is a resource that enables applications such as efficient probabilistic algorithms, numerical integration, simulation, and optimization. In the last few years it was realized that quantum devices can generate probability distributions that are inaccessible with classical means. Hybrid Quantum Computational models combine classical processing with these quantum sampling machines to obtain computational advantage in some tasks. Moreover, NISQ (Noisy, Intermediate-Scale Quantum) technology may suffice to obtain this advantage in the near term, long before we can build large-scale, universal quantum computers. PHOQUSING aims to implement PHOtonic Quantum SamplING machines based on large, reconfigurable interferometers with active feedback, and state-of-the-art photon sources based both on quantum dots and parametric down-conversion. We will overview the different architectures enabling the generation of these hard-to-sample distributions using integrated photonics, optimizing the designs and studying the tolerance to errors. We will build two quantum sampling machines with different technologies, as a way to do cross-checks while exploiting all advantages of each platform. These machines will establish a new state-of-the-art in photonic reconfigurability, system complexity, and integration. Finally, we plan to perform first, proof-of-principle demonstrations of Hybrid Quantum Computation applications in optimization, machine learning, and graph theory. The PHOQUSING team includes long-term scientific collaborators who were among the first to demonstrate quantum photonic samplers; two of the leading European start-ups in the relevant quantum technologies; and theoretical experts in photonics and quantum information science. This project will help establish photonics as a leading new quantum computational technology in Europe, addressing the science-to-technology transition towards a new industrial sector with a large foreseeable economic impact.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00185 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.