Project description
Improving water efficiency in the food and beverage industry
The food and beverage industry is one of the most water- and energy-intensive industries in the world in addition to producing large volumes of waste. Therefore, freshwater supplies are in high demand. Despite significant progress in improving water use efficiency, the food and beverage sector needs to do more to minimise the use of freshwater during the processing of raw materials. However, current solutions for wastewater treatment in industries under a water–waste–energy nexus remain limited. The aim of the EU-funded AccelWater project is to change this pattern and improve freshwater consumption in the food and beverage industry by focussing on developing novel water reclaiming and reusing as well as artificial intelligence-enabled monitoring and control technologies.
Objective
The food and drink industry is the EU's biggest manufacturing. However, this industry is one of the most water and energy intensive industries worldwide while the companies belong to that sector produce a lot of waste. Specifically, the food and beverage industry consumes 56% of the available water for industrial and urban use. Additionally, food processing embeds 28% of the total energy used for production, while the total direct energy consumed by the European food industry amounted to 28.4 Mt oil equivalent, while 30.6 Mt of food waste are produced in this industry. Although, huge steps have been made in increasing the water use efficiency through the use of modern technologies and methods, there is limited effort from the food and beverages industry to minimize freshwater use during the raw material processing. In addition, high water consumption in industrial areas lead to increased production costs due to the fact that the tariffs for public wastewater treatment can be very high in European cities as well as the industrial electricity prices can also be very high. Currently, solutions for wastewater treatment in industries include the use of clarification, membrane filtration, reverse osmosis, process water polishing, disinfection with water treatment chemicals and UV, and biological treatment technologies. However, the use of these technologies under a water-waste-energy nexus is very limited.
AccelWater’s project main objective is to optimize freshwater water consumption in the food and beverage industry under a water-waste-energy nexus by introducing beyond state-of-the-art water reclaiming, reusing and Artificial Intelligence enabled monitoring and control technologies will permit the use of reclaimed water in the manufacturing processes of food and beverages and on the same time will allow waste and energy reclamation, optimization and management, and consequently will result to environmental and socioeconomic sustainability.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology other engineering and technologies food technology
- engineering and technology environmental engineering water treatment processes wastewater treatment processes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.5. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.5.3. - Sustainable, resource-efficient and low-carbon technologies in energy-intensive process industries
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
IA - Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-LOW-CARBON-CIRCULAR-INDUSTRIES-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
11 742 ATHENS
Greece
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.