Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Carbon-based nanoelectromechanical devices

Objective

We will study nanoelectromechanical devices in which the mechanically active component is a carbon allotrope - a nanotube, a fullerene molecule, or a so-called peapod. Our objective is to fabricate, analyse and optimise carbon-based nanoelectromechanical devices and to integrate them with silicon technology. We will focus on applications in information technology such as switches and memory elements. Carbon allotropes are ideal for nanoelectromechanical systems (NEMS).

They combine extraordinary strength with low mass, thereby extending the frequency range of NEMS far beyond the present limits. The electrical properties of carbon-based structures allow for a large variety of electrical functions to be realised in a circuit utilising a single materials platform. Structurally the carbon allotropes fall into three categories: nearly spherical fullerenes of ca 1 nm in diameter, elongated carbon nanotubes (CNTs) of similar diameters but up to several micrometers long, and "peapods", CNTs containing fullerenes. The programme's three research areas are based on the nature of the mechanically active element. Each covers fabrication, measurements and modelling.

The CNT-based devices utilise a suspended nanotube as the mechanically active element either in a nanorelay or a single-electron transistor configuration. In fullerene-based devices the basic structure consists of a fullerene placed in a nanogap between two electrodes. In peapod structures the mechanical degree of freedom is connected with the fullerene motion inside the CNT as well as into and out of the CNT. Integration of carbon-based NEMS to silicon technology is crucial and forms its own research direction. Integration challenges for the three research areas are similar covering preparation of specialised substrates for carbon-based structures and process and signal compatibilities between the different technologies.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

Data not available

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

STREP - Specific Targeted Research Project

Coordinator

CHALMERS TEKNISKA HOEGSKOLA AKTIEBOLAG
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (3)

My booklet 0 0