Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-16

Components for synchronous optical quadrature phase shift keyingtransmission

Project description


Optical, opto-electronic, photonic functional components

Synchronous quadrature phase shift keying (QPSK) transmission combined with return-to-zero (RZ) coding and polarization division multiplex is an extremely attractive modulation format for metropolitan area and long haul fiber communication. Compared to standard intensity modulation the line rate is 4 times lower, the needed number of photons per bit less than half as high, the tolerance to chromatic dispersion about 8 times better, the tolerance to polarization mode dispersion about 3 times better, and the tolerance against fiber nonlinearities, in particular cross phase modulation, is excellent. Moreover, all linear optical distortions (polarization transformations, polarization mode dispersion, chromatic dispersion) can be equalized without losses in the electrical domain. Distinct advantages exist also over all other modulation formats, including duobinary, DPSK and DQPSK. So far, synchronous QPSK has not been realized because the necessary components were not available, for example lasers with linewidths in the lower kHz region. For the implementation of synchronous RZ-QPSK transmission with polarization division multiplex this project aims at the realization of all necessary components which can not be found on the market: LiNbO3 QPSK modulators in the transmitter, LiNbO3 optical 90� hybrids, InP balanced photoreceivers - reliably co-packaged with the 90� hybrids - and SiGe/CMOS integrated electronic circuits for signal conditioning in the receiver. Standard distributed-feedback (DFB) lasers are tolerable for signal and local oscillator lasers due to a novel carrier recovery concept that requires no phase-locked loop. It is implemented in the receiver by analog-to-digital conversion and subsequent CMOS signal processing. The symbol rate is 10 Gsymbols/s which amounts to 40 Gbit/s, plus FEC overhead. All components and contributions shall be validated in a synchronous QPSK polarization division multiplex transmission testbed.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2003-IST-2
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

STREP - Specific Targeted Research Project

Coordinator

UNIVERSITAET PADERBORN
EU contribution
€ 996 150,00
Address
-
- -
Germany

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (4)

My booklet 0 0