Project description
Studying the interaction between the two hemispheres of the brain during stroke recovery
Cerebrovascular accidents (stroke) are the second leading cause of death worldwide, affecting more than 2 million people every year in Europe alone. Current diagnostics can confirm a stroke but are limited in predicting recovery, especially in the cases when a patient suffers from a stroke in one hemisphere of the brain and recovers using the other hemisphere. Recent advances in neuroimaging technologies allow scientists to re-evaluate the guiding theories of the hemispheres’ interaction and elucidate whether they work independently, in competition or in collaboration. Funded by the Marie Skłodowska-Curie Actions programme, the PERSONALISED project aims to study these three hypotheses using advanced neuroimaging and computational modelling to draw meaningful conclusions for precision medicine, improving the ability to predict stoke and provide individualised assistance in recovery.
Objective
Worldwide, cerebrovascular accidents (stroke) are the second leading cause of death, and almost everyone will suffer neurological symptoms at some point in life. In Europe, stroke affects ~2 million people every year, a number that is dramatically increasing due to COVID-19 ramifications. Clinical presentation and neuroimaging can help confirm a stroke diagnosis, but both are limited in predicting recovery. The prediction is particularly challenging when a patient suffers from a stroke in one half of the brain (hemisphere) and recovers using the other hemisphere. Neurosciences have long been working under the assumption that each hemisphere is dominant for a different set of functions. For example, language is considered dominant in the left hemisphere, while visuospatial functions are dominant in the right hemisphere. However, this simple vision is challenged by stroke data.
I propose to revisit the three guiding theories that explain how the hemispheres interact using recent developments in neuroimaging. The two hemispheres of the brain can either work 1) independently, 2) in competition or 3) in collaboration. It is now possible to test the three mechanisms using advanced neuroimaging and computational modelling and draw meaningful conclusions for precision medicine that will improve our ability to predict and aid recovery after stroke.
In PERSONALISED, I anticipate that brain lateralisation mechanisms are dynamic, not the same for all people or across cognitive functions and may lead to different trajectories of recovery after stroke. Overall, PERSONALISED will decipher the mechanisms of brain lateralisation at the individual level, demonstrate the added value of advanced neuroimaging for the clinic and open a new avenue for research on the dynamic aspect of brain lateralisation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology cognitive neuroscience
- medical and health sciences health sciences infectious diseases RNA viruses coronaviruses
- medical and health sciences health sciences personalized medicine
- medical and health sciences basic medicine neurology stroke
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.