Project description
A revolutionary universal spectral imaging sensor platform
Spectral imaging sensors represent a highly beneficial technology enabling enhanced monitoring of product quality, safety, and condition. The EU-funded HyperImage project aims to pioneer a revolutionary universal spectral imaging sensor platform with enhanced speed, modularity, cost-efficiency, and imaging capabilities. By leveraging photonic components, electrically tunable liquid lenses, configurable SMD-style IR micro-emitter arrays, fast steering mirrors, and other innovative technologies, the project targets applications spanning short- and long-range scenarios. Moreover, the sensors will employ AI algorithms and cloud-based analysis platforms to translate captured images into actionable data. The project will highlight the resulting platform through four diverse industrial cases, with anticipated improvements in operational speed, yield, fuel efficiency, and cost reduction.
Objective
The HyperImage project will be the first initiative to develop a universal, fast, modular and cost-effective spectral image sensing technology platform suitable for both short- and long-range imaging applications. To achieve that, HyperImage will make use of innovative photonic components including electrically tunable liquid lenses, pixel shifters, fast steering mirrors, and configurable SMD style IR micro-emitter arrays. HyperImage will integrate these components into innovative, high-performance multi- and hyperspectral snapshot and line scan cameras. AI machine learning algorithms will translate spectral image data into relevant functional products properties and detect and classify objects for more accurate decision making e.g. in autonomous driving. The technology platform will be complemented with a cloud-based spectral image analysis platform and reference data repository that enables users to continuously improve image analysis accuracy and prediction models.
The HyperImage technology platform will be validated in four industrial use cases: (1) quality control in manufacturing of high power electronics; (2) crop growth monitoring for fully automated vertical farming of salads, herbs and microgreens; (3) spectral image based vision and navigation in off-road autonomous driving; (4) light-weight, high-resolution hyperspectral vision system for unmanned geo-surveillance drones.
Based on that, HyperImage will provide European Industry a universal, efficient and reliable solution for object recognition, detailed product and material analysis and reliable quality control in manufacturing. HyperImage solution will lead to strong benefits for the applications such as 10-20% increase yield and reduced cost in manufacturing and vertical farming, 20% fuel saving and up to 40% increased operation speed in autonomous offroad driving; and up to 10% drone weight reduction (25 kg MTOW class) yielding 50% increased flight time through space for a larger battery.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- agricultural sciences agriculture, forestry, and fisheries agriculture
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.4.2 - Key Digital Technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-IA - HORIZON Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL4-2023-DIGITAL-EMERGING-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80686 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.