Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Innovative compatible discretization techniques for Partial Differential Equations

Obiettivo

Partial Differential Equations (PDEs) are one of the most powerful mathematical modeling tool and their use spans from life science to engineering and physics. In abstract terms, PDEs describe the distribution of a field on a physical domain. The Finite Element Method (FEM) is by large the most popular technique for the computer-based simulation of PDEs and hinges on the assumption that the discretized domain and field are represented both by means of piecewise polynomials. Such an isoparametric feature is at the very core of FEM. However, CAD software, used in industry for geometric modeling, typically describes physical domains by means of Non-Uniform Rational B-Splines (NURBS) and the interface of CAD output with FEM calls for expensive re-meshing methods that result in approximate representation of domains. This project aims at developing isoparametric techniques based on NURBS for simulating PDEs arising in electromagnetics, fluid dynamics and elasticity. We will consider discretization schemes that are compatible in the sense that the discretized models embody conservation principles of the underlying physical phenomenon (e.g. charge in electromagnetism, mass and momentum in fluid motion and elasticity). The key benefits of NURBS-based methods are: exact representation of the physical domain, direct use of the CAD output, a substantial increase of the accuracy-to-computational-effort ratio. NURBS schemes start appearing in the Engineering literature and preliminary results show that they hold great promises. However, their understanding is still in infancy and sound mathematical groundings are crucial to quantitatively assess the performance of NURBS techniques and to design new effective computational schemes. Our research will combine competencies in different fields of mathematics besides numerical analysis, such as functional analysis and differential geometry, and will embrace theoretical issues as well as computational testing.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2007-StG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

CONSIGLIO NAZIONALE DELLE RICERCHE
Contributo UE
€ 750 000,00
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0