Objective
Carbon nanotubes (CNTs) are well known for their unique electronic, thermal and mechanical properties. Ensembles of CNTs form networks that can be transparent and at the same time conductive, showing great potential for replacing the currently used indium tin oxide (ITO), whose future availability is at risk due to the impoverishment of the world's sources of indium. CNT networks offer not only an alternative to ITO but also advantages like flexibility, useful with plastic substrates, or avoiding the contamination from ITO of other device materials.
The studies of transparent conductive CNT networks are still at an early stage and despite their good performance the measured properties are below expectation due to the presence of different tube types (metallic and semiconducting) in the same sample, impurities, defectious tubes and interconnection problems. One aim of this project is to explore recently developed possibilities of sorting CNTs according to type for realizing improved and tunable networks. Due to the high anisotropy of CNTs, their macroscopic organization has an impact on the properties of the network: disorganization brings an averaging-down of the properties of individual tubes that thus could be brought to macroscopic scale only by ordering. The applicant has previously shown that liquid crystalline materials can be used to unidirectionally align CNTs. We propose in this project to use this approach also to form aligned networks, studying the relation between electrical conductivity and degree of order and evaluating the corresponding percolation thresholds. The networks will be implemented in device configurations such as LCDs, OLEDs, and solar cells. Also graphene has recently shown to have excellent properties as transparent electrode, but further studies are required of this new material. In combination with CNTs, one could envisage multifunctional electrodes with ordering and optically polarizing properties.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology materials engineering crystals
- natural sciences physical sciences electromagnetism and electronics
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences chemical sciences inorganic chemistry post-transition metals
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-ERG-2008
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
00196 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.