Objective
Apart from the never–ending miniaturization of higher–performance semiconductor devices, two major routes will be required to significantly push the Si semiconductor technology of today beyond its limits: the integration of low–cost Si technology with other high–performance materials and the use of new nanoscale device structures, where photonic and electronic units can exploit new functionalities via quantum physical effects. This project will merge these two important routes, aiming at the integration of III–V compound semiconductor nanostructures on Si for next–generation device applications. We will employ the gallium–arsenide (GaAs) compounds as highly efficient III–V materials due to their ultra–high carrier mobilities, superior optoelectronic properties and band gap engineering potentials. For nanoscale model systems we will incorporate these materials in the form of one–dimensional nanowires (NWs), which benefit from dimensions smaller than the emission wavelength, but also from their nearly defect–free singlecrystalline quality achieved via self–assembled growth. We will employ sophisticated molecular beam epitaxy (MBE) growth techniques to synthesize high–quality arsenide–based NWs on Si (111) via catalyst–free nucleation. The growth kinetics effects and selective area epitaxy will be directly correlated with extended materials characterization for optimization of structural, optical and electronic performance. Basic NW structures will then be extended toward advanced core–shell NW heterostructures for two complementary topics, (i) near–IR nanophotonic emitters with tunable–bandgap emission, and (ii) ultra–high electron mobility NW device structures, in particular field effect transistors (FETs). With detailed physical investigations and proof–of–principle demonstrations of such state–of–the–art device structures, we will provide significant insights toward the integration of nanoscale III–V heterostructures with Si.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences inorganic chemistry post-transition metals
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences chemical sciences catalysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2009-RG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
80333 Muenchen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.