Objective
NOTOX will develop and establish a spectrum of systems biological tools including experimental and computational methods for i) organotypic human cell cultures suitable for long term toxicity testing and ii) the identification and analysis of pathways of toxicological relevance. NOTOX will initially use available human HepaRG and primary liver cells as well as mouse small intestine cultures in 3D systems to generate own experimental data to develop and validate predictive mathematical and bioinformatic models characterizing long term toxicity responses. Cellular activities will be monitored continuously by comprehensive analysis of released metabolites, peptides and proteins and by estimation of metabolic fluxes using 13C labelling techniques (fluxomics). At selected time points a part of the cells will be removed for in-depth structural (3D-optical and electron microscopy tomography), transcriptomic, epigenomic, metabolomic, proteomic and fluxomic characterizations. When applicable, cells derived from human stem cells (hESC or iPS) and available human organ simulating systems or even a multi-organ platform developed in SCREENTOX and HEMIBIO will be investigated using developed methods. Together with curated literature and genomic data these toxicological data will be organised in a toxicological database (cooperation with DETECTIVE, COSMOS and TOXBANK). Physiological data including metabolism of test compounds will be incorporated into large-scale computer models that are based on material balancing and kinetics. Various “-omics” data and 3D structural information from organotypic cultures will be integrated using correlative bioinformatic tools. These data also serve as a basis for large scale mathematical models. The overall objectives are to identify cellular and molecular signatures allowing prediction of long term toxicity, to design experimental systems for the identification of predictive endpoints and to integrate these into causal computer models.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences databases
- natural sciences physical sciences optics microscopy electron microscopy
- medical and health sciences medical biotechnology cells technologies stem cells
- natural sciences computer and information sciences computational science
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-HEALTH-2010-Alternative-Testing
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
66123 Saarbrucken
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.