Project description
New paradigms for embedded systems, monitoring and control towards complex systems engineering
Smart vehicles talk to each other
The use of autonomous mobile systems as unmanned aerial vehicles (UAVs) or smart cars are desirable for example for environmental surveillance like the monitoring of ash clouds emitted by volcano eruptions as seen in 2010. Also increasing traffic throughput by improving vehicle density in roads by smart cars co-ordinating their behaviours without driver involvement will be a means to maintain mobility without the need to build new traffic infrastructures. Sharing the same air- or ground space these systems need to communicate and cooperate with other systems in their environment. However, so far, these systems are not allowed to operate in the public air space or on public roads because the risk of causing severe damage cannot be excluded with sufficient certainty.KARYON addresses the problem of finding robust cruising strategies for vehicles. They are based on information from other vehicles, an estimation of the global system state, and how confident one is about this estimation. KARYON will define a system architecture that is based on a small local safety kernel that will prevent dangerous behaviour. Because this is a very small subsystem compared to the overall complex control system, its predictability can be justified. This is essential for guaranteeing overall safety along a set of safety rules. KARYON will further investigate the relevant fault detection concepts, particularly for the sensor systems, needed to show fulfilment of dependability attributes and argue about safety according to safety standards. Simulation and mixed reality techniques will be developed to validate the approach. KARYON will integrate concepts in advanced event dissemination middleware and in improved simulation and fault-injection tools for assessing the behaviour of autonomous, mobile systems under failure conditions. The project will implement proof-of-concept prototypes and a simulation-based demonstration of the results for scenarios from the automotive and avionics areas, respectively.Project results will be exploited by two large scale companies in the aeronautics domain (GMV and EMBRAER) in a multi Billion EURO market and by one SME in the automotive market. It is expected that their respective position in the world wide competition will be strengthened by the project and a high return on their investment is envisaged. Academic partners will stay at the forefront of world wide research with the knowledge and prestige gained in the project. Also safety standards in the car industry will benefit and by that citizens in Europe will profit from safer mobility.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology mechanical engineering vehicle engineering automotive engineering autonomous vehicles
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering control systems
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics autonomous robots drones
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aeronautical engineering
- natural sciences computer and information sciences software software applications virtual reality
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-ICT-2011-7
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
1749 016 Lisboa
Portugal
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.