Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Geometry of Grassmannian Lagrangian manifolds and their submanifolds, with applications to nonlinear partial differential equations of physical interest

Ziel

The aim of GEOGRAL is to strengthen the bonds of the geometric theory of nonlinear PDEs (and, in particular, integrable systems and equations of Monge-Ampère type) with the geometry of Lagrangian Grassmannians and their submanifolds. In spite of the evident parallelism between these two disciplines, attempts have been rare, yet sophisticated, to cast a bridge between them, and the Applicant himself already gave his own contribution in this direction: he clarified the structure of the space of non-maximal integral elements of the contact planes in jet spaces and studied 3rd order Monge-Ampère equations (which turn out to be of key relevance in topological field theories) through the so-called meta-symplectic structure on the 1st prolongation of a contact manifold.
GEOGRAL has a wide applicative scope, as its theoretical results can be tested on equations and variational problems of key importance for Natural Sciences, Technology and Economy. Tailored to the Applicant's scientific profile and designed in continuity with his previous and current research activities, GEOGRAL consists of four research lines:
[MOV] Regard Lagrangian Grassmannians as homogeneous spaces and and use Cartan's method of moving frame to classify their submanifolds, as in D. The's work, and characterise the corresponding invariant equations, in continuity with D. Alekseevsky's work.
[HYD] Continue the study of certain rational normal curve bundles on Lagrangian Grassmannians, and their bisecant varieties, which are associated with integrable systems of hydrodynamic type, discovered by E. Ferapontov.
[HMA] Geometric study of multi-dimensional and higher-order Monge-Ampère equations, initiated by G. Manno and the Applicant.
[FBV] Study some examples of Cauchy problems and variational problems with free boundary values by exploiting the geometric structures on the spaces of isotropic flags and non-maximal isotropic elements of a meta-symplectic space, in continuity with the Applicant's own work.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MSCA-IF-EF-ST - Standard EF

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) H2020-MSCA-IF-2014

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 146 462,40
Adresse
UL. SNIADECKICH 8
00-656 Warszawa
Polen

Auf der Karte ansehen

KMU

Die Organisation definierte sich zum Zeitpunkt der Unterzeichnung der Finanzhilfevereinbarung selbst als KMU (Kleine und mittlere Unternehmen).

Ja
Region
Makroregion województwo mazowieckie Warszawski stołeczny Miasto Warszawa
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 146 462,40
Mein Booklet 0 0