Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Geometry of Grassmannian Lagrangian manifolds and their submanifolds, with applications to nonlinear partial differential equations of physical interest

Objectif

The aim of GEOGRAL is to strengthen the bonds of the geometric theory of nonlinear PDEs (and, in particular, integrable systems and equations of Monge-Ampère type) with the geometry of Lagrangian Grassmannians and their submanifolds. In spite of the evident parallelism between these two disciplines, attempts have been rare, yet sophisticated, to cast a bridge between them, and the Applicant himself already gave his own contribution in this direction: he clarified the structure of the space of non-maximal integral elements of the contact planes in jet spaces and studied 3rd order Monge-Ampère equations (which turn out to be of key relevance in topological field theories) through the so-called meta-symplectic structure on the 1st prolongation of a contact manifold.
GEOGRAL has a wide applicative scope, as its theoretical results can be tested on equations and variational problems of key importance for Natural Sciences, Technology and Economy. Tailored to the Applicant's scientific profile and designed in continuity with his previous and current research activities, GEOGRAL consists of four research lines:
[MOV] Regard Lagrangian Grassmannians as homogeneous spaces and and use Cartan's method of moving frame to classify their submanifolds, as in D. The's work, and characterise the corresponding invariant equations, in continuity with D. Alekseevsky's work.
[HYD] Continue the study of certain rational normal curve bundles on Lagrangian Grassmannians, and their bisecant varieties, which are associated with integrable systems of hydrodynamic type, discovered by E. Ferapontov.
[HMA] Geometric study of multi-dimensional and higher-order Monge-Ampère equations, initiated by G. Manno and the Applicant.
[FBV] Study some examples of Cauchy problems and variational problems with free boundary values by exploiting the geometric structures on the spaces of isotropic flags and non-maximal isotropic elements of a meta-symplectic space, in continuity with the Applicant's own work.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF-EF-ST - Standard EF

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2014

Voir tous les projets financés au titre de cet appel

Coordinateur

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 146 462,40
Adresse
UL. SNIADECKICH 8
00-656 Warszawa
Pologne

Voir sur la carte

PME

L’entreprise s’est définie comme une PME (petite et moyenne entreprise) au moment de la signature de la convention de subvention.

Oui
Région
Makroregion województwo mazowieckie Warszawski stołeczny Miasto Warszawa
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 146 462,40
Mon livret 0 0