Objective
The effect of temperature changes on ecosystems is determined by the physiological responses of individual organisms, but most studies predict responses at the species level. This conceptual convenience allows us to use relatively simple models but does not allow for phenotypic plasticity or adaptation: the extent to which individuals are able to mitigate combined direct and indirect effects of temperature change by modifying their behaviour or energy budgets. The role of phenotypic plasticity in predicting population, species and ecosystem responses to change is one of the most pressing, but challenging areas in modern ecology. The importance of adaptation in moderating the ecological effects of warming in marine systems is very poorly understood.
Field metabolic rate (FMR) is the amount of energy consumed by an individual while performing day to day biological functions. An individual’s field metabolic rate therefore integrates a wide range of physiological and behavioural responses to the ambient environment, and is an ideal metric for understanding how individuals respond and adapt to temperature change. Unfortunately, there are major scientific challenges to measuring field metabolic rates in natural conditions. We will meet the challenge of recording FMR in marine ectotherms by exploiting a new biogeochemical measurement field metabolic rate in marine fishes based on the stable carbon isotope composition of otoliths. We will measure metabolic responses of a model organism, the Atlantic cod (Gadus morhua), and test a series of fundamental ecological hypotheses relating between-individual diversity in respiratory physiology to population scale resilience. Our research will break new ground by turning otoliths into internal metabolic loggers and significantly impact on our ability to investigate the links between individual adaptations, climate change and the distribution and persistence of populations.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry inorganic compounds
- natural sciences earth and related environmental sciences environmental sciences sustainability sciences
- engineering and technology environmental engineering ecosystem-based management climate change adaptation
- natural sciences biological sciences ecology ecosystems
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8000 Aarhus C
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.