Objective
Galaxies reside within a web of gas that feeds the formation of new stars. Following star formation, galaxies eject some of their gas reservoir back into this cosmic web. This proposal addresses the fundamental questions of how these inflows and outflows regulate the evolution of galaxies. My research team will tackle two key problems: 1) how gas accretion regulates the build-up of galaxies; 2) how efficiently outflows are in removing gas from star-forming regions. To characterise these flows across five billion years of cosmic history, we will pursue cutting-edge research on the halo gas, which is the material around the central galaxies, within dark matter halos. We will focus on scales ranging from a few kiloparsecs, where outflows originate, up to hundreds of kiloparsecs from galaxies, where inflows and outflows have visible impacts on halos. We will attack this problem using both simulations and observations with the largest telescopes on the ground and in space. With novel applications of absorption spectroscopy, we will gain a new vantage point on the astrophysics of these gas flows. Exploiting unprecedented datasets that I am currently assembling thanks to ground-breaking developments in instrumentation, we will directly connect the properties of halo gas to those of the central galaxies, investigating the impact that the baryonic processes probed in absorption have on galaxies seen in emission. In parallel, using new hydrodynamic simulations and radiative transfer calculations, we will go beyond present state-of-the-art methodologies to unveil the theory behind the origin of these gas flows, a crucial aspect to decode the physics probed by our observations. As a result of this powerful synergy between observations and simulations, this programme will provide the most advanced analysis of the impact that inflows and outflows have on galaxy evolution, shaping the direction of future work at 40m telescopes and the next generation of cosmological simulations.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- humanities history and archaeology history
- natural sciences physical sciences astronomy astrophysics
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
DH1 3LE DURHAM
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.