Objective
We will develop a sensor, communication, and processing suite for small drones for autonomously detecting and avoiding “ground-based” obstacles and flying objects.
To avoid ground-based obstacles, we aim for a lightweight, energy-efficient sensor and processing package that maximizes payload capacity. Self-supervised learning will allow for a breakthrough in perception range. This will enable effective fusion of stereo vision, motion, appearance, ranging and audio information. Our learning process will allow obstacle detection as far as the camera ‘sees’, rather than the current ± 30 m. For close distances, our solution does without energy expensive active sensors such as lasers or sonar.
For collaborative avoidance between drones and other air vehicles, we achieve an interoperable solution by combining multiple communication hardware types (ADSB, 4/5G, WiFi) to exchange information on position, speed, and future waypoints. This will enable drones to successfully avoid other flying vehicles even in a very densely used air space. The probability for a collision in a collaborative scenario will be in the order of 10-9.
For non-collaborative avoidance, we rely on sensors and even the communication hardware mentioned above. If a non-collaborative aircraft emits communication signals, for instance to a ground station, this hardware allows to retrieve angular measurements. These measurements can be fused with detection and angle estimations performed with multiple tiny microphones and cameras on board of the detecting drone. We estimate the collision probability in a non-collaborative scenario as 10-6.
These performances will be assessed by simulations and extensive real-world tests. The consortium will benefit from the partners’ academic and industrial background with expertise in autonomous flight of very light-weight drones, robust wireless communication, drone design, production, and operation to realize a commercially viable platform.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics autonomous robots
- natural sciences computer and information sciences artificial intelligence machine learning
- natural sciences computer and information sciences data science data processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.4.7. - SESAR JU
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SESAR-RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-SESAR-2016-1
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2628 CN DELFT
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.