Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Tumor suppressive microRNAs for cancer therapy

Objective

The challenge for cancer therapy involves hampering the mechanisms by which the normal gene expression machinery is taken over to allow the aberrant appearance of cancer driving genes. I propose exploiting the therapeutic potential of a special class of tumor microRNAs (miRs) that function as natural post-transcriptional tumor suppressive regulators of many genes in key pathways. These anti-cancer effectors represent an inherent organismal property that I propose to augment and thereby translate into a form of systemic anti-cancer therapy. First, focusing on hepatocellular carcinoma (HCC), I shall perform high throughput screening to identify preferred HCC tumor suppressive miRs. Second, I shall search for small molecules capable of elevating the level of those relevant miRs in tumor cells and tissues. Increasing miR expression will potentially also enhance their secretion into the circulation in exosomes thereby suppressing gene expression at remote tissue sites as well. Third, I shall test the potential of these miRs to better target and inhibit the growth of tumor cells both, in culture and in vivo. This unprecedented conceptual strategy should stimulate the organism’s self-healing potential by enhancing inherent anti-tumor mechanisms. This project is built on robust preliminary findings that show promiscuous anti-cancer effects and predictably fewer side effects due to its completely host-based nature, with the administered miR inducer being the only foreign element. Additionally, due to the fact that each miR simultaneously targets a number of molecular pathways as well as multiple steps within a given pathway, it could help to overcome the major problem of cancer therapy – resistance. This strategy of harnessing these efficient and robust miRs and exosomes for delivery of anti-cancer therapeutics may overcome the high-risk challenge involved and enable high gain value.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2017-ADG

See all projects funded under this call

Host institution

THE HEBREW UNIVERSITY OF JERUSALEM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 840 729,00
Address
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 JERUSALEM
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 840 729,00

Beneficiaries (1)

My booklet 0 0