Objective
''It is difficult to make predictions, especially about the future'' - Mark Twain.
Yet, Gordon Moore's predictions - known as Moore's Law - made in 1965 remained valid for half a century!
As a result, semi-conductor technology is approaching nano-scale
integration and on this journey to quantum futures the traveller
enters the world of quantum physics, where many of the phenomena are
rather different from those of classical physics. This proposal
contributes to the 'quantum jig-saw puzzle', with special emphasis on
the enabling techniques of ubiquitous quantum communications,
potentially leading to job- and wealth-creation on a similar scale to
the economic benefits of flawless classic wireless communications.
My ultimate goal as a telecommunications researcher is to build
bridges across the exciting fields of quantum physics, mathematics,
computer science and hardware aspects of quantum communications.
Specifically, the three Key Challenges of Work-Packages 1-3 on the new
concept of Pareto-optimum error control, secret key-distribution,
network coding and entanglement distribution will lead to creating
stepping-stones for the Grand Challenge of Work-Package 4, dedicated
to the support of quantum-communications for aircraft 'above the
clouds'.
Methodology: theoretical performance bounds will be established
based on the hitherto unexplored Pareto-optimum quantum design
philosophy using multi-component optimization. Explicitly, the
Pareto-front of optimal solutions will be found off-line, where none
of the conflicting parameters, such as the bit-error ratio, transmit
power, delay and implementation complexity can be improved without
degrading some of the others. A suite of new soft-decision aided
components will be conceived by invoking code-specific quantum
syndrome decoders to be designed for iterative soft-information
exchange without perturbing the fragile quantum states. Finally,
quantum-communications solutions will be created for drones and planes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics autonomous robots drones
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications
- humanities philosophy, ethics and religion philosophy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
SO17 1BJ Southampton
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.