Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Visually guided grasping and its effects on visual representations

Objective

I ask how vision guides grasping, and conversely, how learning to grasp objects constrains visual processing. Grasping an object feels effortless, yet the computations underlying grasp planning are nontrivial and there is an extensive literature describing the multifaceted features of visually guided grasping. I aim to bind this fragmented body of knowledge into a unified framework for understanding how humans visually select grasps. To do so I will use motion-tracking hardware (already in place at the University of Giessen) to measure and model human grasping patterns to 3D objects. I will rely on Dr. Fleming’s unique expertise with physical simulation to simulate human grasping with objects varying in shape and material. Joining behavioral measurements with computer simulations will provide a powerful data- and theory-driven approach to fully map out the space of human grasping behavior. The complementary goal of this proposal is to understand how grasping constrains visual processing of object shape and material. I plan to tackle this goal by building a computational model of visual processing for grasp planning. Both Dr. Fleming and I have previous experience with computational modelling of visual function. I will exploit powerful machine learning techniques to infer what kinds of visual representations are necessary for grasp planning. I will train Deep Neural Nets (for which the hardware and software is already in place and in use by the Fleming lab) using extensive physics simulations. Dissecting the learned network architecture and comparing the network’s performance to human behavior will tell us what information about shapes, material, and objects the human visual system encodes to plan motor actions. In short, with this research I aim to determine how processing within the human visual system is shaped by and guides hand motor action.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2017

See all projects funded under this call

Coordinator

JUSTUS-LIEBIG-UNIVERSITAET GIESSEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 159 460,80
Address
LUDWIGSTRASSE 23
35390 GIESSEN
Germany

See on map

Region
Hessen Gießen Gießen, Landkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 159 460,80
My booklet 0 0