Objective
Sapphire demand in 2016 was about 806 ton, while the total industrial sapphire core and wafer market has observed an annual growth rate of 12%. Moreover, silicon carbide-based power devices market is expected to grow steadily from € 143M in 2016 to € 851M in 2022. Despite the increasing demand of these crystals, quality control of such materials is based mostly on human visual inspection. Industrial crystal manufactures usually rely on operators searching for internal material flaws such as cracks or bubbles. Because of quality control being prone to human error, and taking place only at the late stages of the process, typical crystal factories are spending 0.5 to 3 days per week of potential unnecessary work. To solve this problem, Scientific Visual has developed SAPPHIRO.
SAPPHIRO’s technology comprises scanning systems for automated crystal inspections, allowing to identify internal defects in crystal slices earlier. Our solution allows producers to manage quality assessment in a faster way, since the technology also provides automatic processing and sorting of inspected pieces (0.5M to 1M samples/year). SAPPHIRO's performance has proven to reach more than 96% of accurate defect identification in sapphire material and allows manufacturers process only high-quality materials, saving up to 15% of overall cost for industrial operations.
Scientific Visual main goal is to implement SAPPHIRO as a worldwide standard in raw optical crystals inspection tools, whereas our disruptive technology can re-shape the synthetic growth market practices. By 2022, we target to generate € 10.5 million in revenues, while significantly reducing the current defect rate of 20% to less than 4%. This Phase 1 project will allow us to show-case our technology leading to better market understanding and new partnerships.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering control systems
- engineering and technology environmental engineering energy and fuels renewable energy
- natural sciences physical sciences optics
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications mobile phones
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.3. - INDUSTRIAL LEADERSHIP - Innovation In SMEs
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3. - PRIORITY 'Societal challenges
See all projects funded under this programme -
H2020-EU.2.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME-1 - SME instrument phase 1
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-EIC-SMEInst-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1006 Lausanne
Switzerland
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.