Project description
Smartphone app for eating disorders
Eating disorders affect around 20 million people in the EU. Often associated with problematic behaviours, such as self-starvation, bingeing and purging, their treatment typically includes a combination of psychotherapy and nutrition education. In this context, the EU-funded SmartEater project is developing an app to provide intelligent mobile logging of psychological and emotional states as well as eating behaviours, as a basis for interventions supporting individuals with bulimia nervosa or binge eating disorder. To ensure high user adherence, the app asks users to repeatedly enter data on craving for foods, stress, and more. Applying machine learning algorithms, the app ‘learns’ from the user and predicts potentially problematic future eating behaviours for timely intervention.
Objective
Smartphones are ubiquitous in all age groups and socioeconomic levels and digitalization of various life domains is in full
progress. While there are several areas where skepticism is justified, the personal health domain still holds high promises, particularly when applied in specific settings. The proposed mHealth app SmartEater provides intelligent mobile logging of stress, and eating
behavior as a basis for intervention and follow-up care in clinics treating eating disorders and obesity. Current apps require frequent and cumbersome entries, resulting in low user adherence and poor data quality. Evidence for their usefulness is often missing. Further, therapeutic content is not personalized. In SmartEater, users repeatedly enter data on experienced craving for foods and stress. SmartEater then ‘learns’ from the user through sophisticated machine learning algorithms: data from smartphone usage
patterns (e.g. screen-on time, calls, messages, internet traffic) and sensor data (e.g. movement, background noise) are
combined to substitute for manual user input, thereby progressively reducing user burden. Temporal pattern analysis of
individual time-series allows prediction of stress and craving bouts into the near future. Such predictions allows the app to respond
to upcoming eating 'crises’ e.g. overeating/binge eating and launch situation-appropriate tips that have been developed individually for the user during in-patient treatment. SmartEater will be routed in psychological models of eating behavior and rigorously tested in the described population to evaluate efficacy. Due to the sensitive nature of such data, SmartEater enforces strict privacy protection. Targeted markets include health insurances which profit from improved patient health and successful transfer into daily life after professional treatment as well as clinics with an eating/weight disorder focus in German speaking coutries.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences internet
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications mobile phones
- natural sciences computer and information sciences artificial intelligence machine learning
- medical and health sciences health sciences nutrition obesity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-POC - Proof of Concept Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-PoC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
5020 SALZBURG
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.