Project description
Impact of climate change on volcanic eruptions
Volcanic eruptions inject sulfur gases in the atmosphere which modify Earth's energy balance and result in a cooling at Earth’s surface. Cooling that follows large eruptions can have major societal impacts and also contribute to mitigating global warming. However, the processes that govern the surface cooling associated with an eruption are themselves sensitive to the climate. For example, the transport of volcanic gases is governed by atmospheric circulation. The EU-funded VOLCPRO project aims to investigate how climate change will affect the life cycle of volcanic gases, and to assess whether volcanic cooling will be enhanced or tamed as Earth warms.
Objective
Volcanic eruptions injecting gases into the stratosphere modify Earth’s radiative balance and atmosphere chemistry, which in turn impacts all components of the Earth system. The surface cooling that follows large eruptions can have major societal impacts and volcanic eruptions contribute to mitigate global warming. Yet, climate model projections use simplistic representation of this key forcing and commonly assume a constant volcanic forcing in the future. The most realistic projections only represent very large and rare eruptions, and ignore how climate change will affect the rise of volcanic plumes, the evolution of the associated aerosol clouds and the subsequent climate impacts.
To improve the representation of volcanic forcing in climate model projections, I will address two fundamental questions:
1) How does a statistically realistic representation of volcanic eruptions of all magnitude in climate models affect projected climate changes?
2) How will climate-volcano feedbacks modulate the impact of future volcanic eruptions on climate?
To answer them, I will perform a suite of experiments with the United Kingdom’s flagship Earth system model, UKESM1, which is a fully coupled aerosol-chemistry-climate model. These experiments are aimed to feed the designing of future climate projections.
During the fellowship, I will gain brand-new skills in climate modeling and be trained by world-leading experts in this field. I will combine these skills with my expertise in physical volcanology to address the proposed research questions and, in particular, improve our understanding of climate-volcano interactions in the context of global climate change. The fellowship will enable me to become an interdisciplinary leader in climate-volcano research and will constitute a stepping stone towards new research opportunities and applications for a tenure-track position.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences earth and related environmental sciences geology volcanology
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
- natural sciences computer and information sciences software software applications simulation software
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN Cambridge
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.