Descripción del proyecto
La geometría de hiper-Kähler, fundamental para las matemáticas modernas
Comprender que la gravedad dobla el espacio-tiempo y que el universo es curvo ha impulsado la ciencia y cambiado el mundo. Hoy en día, la curvatura de hiper-Kähler es el campo más fascinante de la geometría debido a los fenómenos excepcionales que abarca. Su simetría espacial única la ha convertido en el eje del campo de las matemáticas conocido como geometría algebraica. Gracias a la precisión que ofrecen los estudios de las soluciones de las ecuaciones algebraicas, se pueden abrir ámbitos importantes para las matemáticas modernas y la ciencia en general. El objetivo del proyecto HyperK, financiado con fondos europeos, es ampliar la geometría de hiper-Kähler y hacerla coincidir con la ya asentada teoría de las superficies K3. Se propone probar las conclusiones básicas relativas a los ciclos, clasificar las estructuras de Hodge y las invariantes cohomológicas, y situar el panorama de hiper-Kähler en el corazón de las matemáticas modernas.
Objetivo
The space around us is curved. Ever since Einstein’s discovery that gravity bends space and time, mathematicians and physicists have been intrigued by the geometry of curvature. Among all geometries, the hyperkähler world exhibits some of the most fascinating phenomena. The special form of their curvature makes these spaces beautifully (super-)symmetric and the interplay of algebraic and transcendental aspects secures them a special place in modern mathematics. Algebraic geometry, the study of solutions of algebraic equations, is the area of mathematics that can unlock the secrets in this realm of geometry and that can describe its central features with great precision. HyperK combines background and expertise in different branches of mathematics to gain a deep understanding of hyperkähler geometry. A number of central conjectures that have shaped algebraic geometry as a branch of modern mathematics since Grothendieck’s fundamental work shall be tested for this particularly rich geometry.
The expertise covered by the four PIs ranges from category theory over the theory of algebraic cycles to cohomology of varieties. Any profound advance in hyperkähler geometry requires a combination of all three approaches. The concerted effort of the PIs, their collaborators, and their students will lead to major progress in this area. The goal of HyperK is to advance hyperkähler geometry to a level that matches the well established theory of K3 surfaces, the two-dimensional case of hyperkähler geometry.
We aim at proving fundamental results concerning cycles, at classifying Hodge structures and cohomological invariants, and at unifying geometry and derived categories. Specific topics in- clude the splitting conjecture, the Hodge conjecture in small degrees, moduli spaces in derived categories, geometric K3 categories, and special subvarieties.
The ultimate goal of HyperK is to draw a clear and distinctive picture of the hyperkähler landscape as a central part of mathematic
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: https://op.europa.eu/es/web/eu-vocabularies/euroscivoc.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: https://op.europa.eu/es/web/eu-vocabularies/euroscivoc.
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-SyG - Synergy grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2019-SyG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
53113 Bonn
Alemania
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.