Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Modern Aspects of Geometry: Categories, Cycles and Cohomology of Hyperkähler Varieties

Project description

Hyperkähler geometry at the centre of modern mathematics

The understanding that gravity bends space and time and that the universe is curved has boosted science and changed the world. Today, the hyperkähler curvature is the most fascinating field in geometry due to the rare phenomena it encompasses. Its unique spaces symmetry has made it the focal point of the area of mathematics called algebraic geometry. With the precision offered by studies of solutions of algebraic equations it can open important areas for modern mathematics and science in general. The EU-funded HyperK project aims to expand hyperkähler geometry and match it with the already deep-rooted theory of K3 surfaces. The aim is to prove basic conclusions concerning cycles, classify Hodge structures and cohomological invariants and place the hyperkähler landscape at the centre of modern mathematics.

Objective

The space around us is curved. Ever since Einstein’s discovery that gravity bends space and time, mathematicians and physicists have been intrigued by the geometry of curvature. Among all geometries, the hyperkähler world exhibits some of the most fascinating phenomena. The special form of their curvature makes these spaces beautifully (super-)symmetric and the interplay of algebraic and transcendental aspects secures them a special place in modern mathematics. Algebraic geometry, the study of solutions of algebraic equations, is the area of mathematics that can unlock the secrets in this realm of geometry and that can describe its central features with great precision. HyperK combines background and expertise in different branches of mathematics to gain a deep understanding of hyperkähler geometry. A number of central conjectures that have shaped algebraic geometry as a branch of modern mathematics since Grothendieck’s fundamental work shall be tested for this particularly rich geometry.
The expertise covered by the four PIs ranges from category theory over the theory of algebraic cycles to cohomology of varieties. Any profound advance in hyperkähler geometry requires a combination of all three approaches. The concerted effort of the PIs, their collaborators, and their students will lead to major progress in this area. The goal of HyperK is to advance hyperkähler geometry to a level that matches the well established theory of K3 surfaces, the two-dimensional case of hyperkähler geometry.
We aim at proving fundamental results concerning cycles, at classifying Hodge structures and cohomological invariants, and at unifying geometry and derived categories. Specific topics in- clude the splitting conjecture, the Hodge conjecture in small degrees, moduli spaces in derived categories, geometric K3 categories, and special subvarieties.
The ultimate goal of HyperK is to draw a clear and distinctive picture of the hyperkähler landscape as a central part of mathematic

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SyG - Synergy grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-SyG

See all projects funded under this call

Host institution

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 3 931 798,00
Address
REGINA PACIS WEG 3
53113 Bonn
Germany

See on map

Region
Nordrhein-Westfalen Köln Bonn, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 3 931 798,00

Beneficiaries (4)

My booklet 0 0