Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Modern Aspects of Geometry: Categories, Cycles and Cohomology of Hyperkähler Varieties

Descrizione del progetto

La geometria Hyperkähler al centro della matematica moderna

L’aver compreso che la gravità piega lo spazio e il tempo e che l’universo è curvo ha potenziato la scienza e cambiato il mondo. Oggi, la curvatura di Hyperkäler è il campo più affascinante della geometria grazie ai rari fenomeni che racchiude. La sua singolare simmetria degli spazi l’ha resa il punto focale dell’area della matematica chiamata geometria algebrica. Con la precisione offerta dagli studi sulle soluzioni di equazioni algebriche, può aprire aree importanti per la matematica moderna e la scienza in generale. Il progetto HyperK, finanziato dall’UE, mira a espandere la geometria Hyperkähler e ad abbinarla alla teoria già radicata delle superfici K3. L’obiettivo è quello di dimostrare le conclusioni di base relative ai cicli, classificare le strutture di Hodge e gli invarianti coomologici e porre il quadro Hyperkähler al centro della matematica moderna.

Obiettivo

The space around us is curved. Ever since Einstein’s discovery that gravity bends space and time, mathematicians and physicists have been intrigued by the geometry of curvature. Among all geometries, the hyperkähler world exhibits some of the most fascinating phenomena. The special form of their curvature makes these spaces beautifully (super-)symmetric and the interplay of algebraic and transcendental aspects secures them a special place in modern mathematics. Algebraic geometry, the study of solutions of algebraic equations, is the area of mathematics that can unlock the secrets in this realm of geometry and that can describe its central features with great precision. HyperK combines background and expertise in different branches of mathematics to gain a deep understanding of hyperkähler geometry. A number of central conjectures that have shaped algebraic geometry as a branch of modern mathematics since Grothendieck’s fundamental work shall be tested for this particularly rich geometry.
The expertise covered by the four PIs ranges from category theory over the theory of algebraic cycles to cohomology of varieties. Any profound advance in hyperkähler geometry requires a combination of all three approaches. The concerted effort of the PIs, their collaborators, and their students will lead to major progress in this area. The goal of HyperK is to advance hyperkähler geometry to a level that matches the well established theory of K3 surfaces, the two-dimensional case of hyperkähler geometry.
We aim at proving fundamental results concerning cycles, at classifying Hodge structures and cohomological invariants, and at unifying geometry and derived categories. Specific topics in- clude the splitting conjecture, the Hodge conjecture in small degrees, moduli spaces in derived categories, geometric K3 categories, and special subvarieties.
The ultimate goal of HyperK is to draw a clear and distinctive picture of the hyperkähler landscape as a central part of mathematic

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SyG - Synergy grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2019-SyG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 3 931 798,00
Indirizzo
REGINA PACIS WEG 3
53113 Bonn
Germania

Mostra sulla mappa

Regione
Nordrhein-Westfalen Köln Bonn, Kreisfreie Stadt
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 3 931 798,00

Beneficiari (4)

Il mio fascicolo 0 0