Project description
Drones inspect wind turbines
Unmanned aerial vehicles (UAVs) are beginning to play a role in performing inspections of wind turbine blades. Compared to manual inspections, drone-based solutions can deliver a flexible, cost-effective inspection of wind turbines. The EU-funded Windrone Zenith project is developing a solution to provide 3-blade inspection in a single flight. Its technology is equipped with highly accurate inspection equipment hardware coupled with smart software. Machine learning algorithms will be used to continuously improve automated fault detection based on a growing database of captured images and their analysis. A special cloud reporting platform will make actionable reports available to customers.
Objective
"Over the lifetime of a wind turbine, operation and maintenance costs represent 25% of total levelised cost per kWh produced. The majority of these costs are attributed to the wind turbine’s blades, yet current methods of inspecting these blades are outdated and inefficient.
Blade inspection procedures still largely relies on qualified inspectors roping down each blade to manually inspect for any flaws or defects present on the blade. This is clearly a very hazardous, time-consuming (5 hours), and expensive method (€1500).
Other less used methods of blade inspection include capturing blade images from ground cameras and manual review by
experts. However, poor image quality and strong backlight leaves many blade flaws undetected.
Unmanned Aerial Vehicles (UAVs) are now being used to take pictures of the blades from much closer up. Current UAV's however require dedicated experts for both flight control as well as image processing, analysis, and fault detection.
Pro-Drone's integrated WindDrone Zenith’s solution is a breakthrough solution providing enabling 3-blade inspection in a single flight. Our technology solution is fully equipped with highly accurate inspection equipment hardware coupled with smart software. The software allows the UAV to be fly autonomously, avoid collisions, automatically detect any faults, and generate reports for the customer on each wind turbine inspected. Machine learning algorithms are used to continuously improve automated fault detection based on a growing database of captured images and their analysis. Our ""BladeInsight"" cloud reporting platform makes actionable reports available to our customers as part of this solution. Pro-Drone Zenith provides for a 50% direct cost saving, and decreases turbine inspection downtime by 6X, as compared to existing methods."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences software
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- engineering and technology environmental engineering energy and fuels renewable energy wind energy
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics autonomous robots drones
- natural sciences computer and information sciences artificial intelligence machine learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.3. - INDUSTRIAL LEADERSHIP - Innovation In SMEs
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3. - PRIORITY 'Societal challenges
See all projects funded under this programme -
H2020-EU.2.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME-2 - SME instrument phase 2
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-EIC-SMEInst-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2740-122 PORTO SALVO
Portugal
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.