Project description
Exploiting light-induced and controlled topology for fast and energy-efficient logic operations
About 10 % of the energy produced globally is used to power electronic circuits that carry out logic operations for the global internet and in consumer devices. The EU-funded OPTOlogic project therefore aims to develop a computing architecture that takes advantage of light-induced and controlled topology for energy-efficient logic operations. To artificially induce and control topological protected states, the project will create a new class of dissipationless quantum devices generated through spatially and temporally structured ultrafast pulses of light. The quantum devices prepared will use minimal energy to move and store information, while dramatically increasing computing power. By increasing the energy efficiency and speed of logical operations, the project could have a significant economic, environmental and social impact.
Objective
The goal of this proposal is the development of light-induced and controlled topology for energy-efficient logic operations. We address the fact that 10% of the global energy production is used to power electronic circuits which perform logic operations for the global internet and in consumer devices, and that the projected energy consumption will increase by 20% by 2030. OPTOlogic envisions a new class of dissipation-less quantum devices generated
through spatially and temporally structured ultrafast pulses of light to artificially induce and control topological protected states. With OPTOlogic, we will prepare future quantum devices based on intrinsic and light-induced topological building blocks which move and store information with minimal energy expense, whilst achieving dramatically increased computing power. We will create a computing architecture that exploits light-induced topology within which near-arbitrary patterns can be written, changed, and re-written on the fly. The required breakthrough will be achieved with a multi-disciplinary team of experts and SME which unites world-leading experimental, theoretical, and industrial expertise in condensed matter physics,
ultrafast laser technology, non-linear optics, strong-field physics, attosecond metrology, quantum optics and gauge theory, quantum computing, machine learning and artificial intelligence. Overall, increasing the energy efficiency and speed of logical operations, OPTOlogic would have a significant economic, environmental, and social impact and address a market which was valued 426.0 million USD in 2017.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences internet
- natural sciences mathematics pure mathematics topology
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08860 Castelldefels
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.