Project description
New computational fluid dynamics methods make aircraft quieter
More than 4 million people in the EU are exposed to aviation noise levels of more than 55 decibels (dB) Lden from air transport while noise levels above 45 dB Lden are associated with adverse health effects. And yet, the sound of aircraft engines, can exceed 140 dB during take-off. To reduce this level, the EU-funded DJINN project will develop a new generation of reliable computational fluid dynamics (CFD) methods to assess promising noise-reduction technologies for future integrated propulsion aircraft. It is suggested to achieve 5 dB reduction of the jet-airframe interaction noise peak level at low frequencies. According to DJINN, understanding, modelling and predicting jet-airframe noise is the key to conceiving efficient noise-reduction technologies.
Objective
With the aim of reducing the environmental impact of noise caused by aircraft during take-off, the prediction and mitigation of jet-airframe interaction noise sources remain significant challenges for closely integrated propulsion-airframe architectures.
The ambition of the DJINN project is therefore to develop a new generation of reliable computational fluid dynamics (CFD) methods, most of them belonging to the field of hybrid methods, for assessing promising noise-reduction technologies, with support and validation from reduced-scale experiments. This key ambition is tied to the provision of advanced tools for coupled aerodynamics-aeroacoustics to enable design optimisation in future industrial environments and to reach a new level of noise reduction through a highly collaborative effort.
The DJINN project denotes a breakthrough in designing quieter and greener aircraft through both improved CFD methods and better physical understanding. The ability to understand, model and predict jet-airframe noise is the key to conceive efficient noise reduction technologies and optimise future industrial designs. Important noise reductions of future integrated propulsion aircraft are foreseen with 5 dB reduction of the jet-airframe interaction noise peak level at low frequencies. This objective cannot be reached by investigating the engine/nozzle and airframe systems separately. Improved CFD methods for multi-physics modelling utilizing high-performance computing are expected to reduce design times and costs by around 25% compared to large-scale testing.
The DJINN project will make a major impact on economic and environmental factors and secure the leadership of the European aeronautics industry in the highly competitive global market.
The consortium is formed by major industrial aeronautical companies, well-known research organisations and academic groups, with an SME acting as the coordinator.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics computational fluid dynamics
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aeronautical engineering
- natural sciences computer and information sciences computational science multiphysics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MG-2018-2019-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
14163 Berlin
Germany
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.