Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Detection of Early seismic signal using ARtificiaL Intelligence

Descrizione del progetto

Rilevare segnali di bassa ampiezza per prevedere i terremoti

Pericoli naturali come i terremoti sono difficili da prevedere, ma gli straordinari sviluppi nel campo dell’intelligenza artificiale (IA) stanno aprendo la strada alla previsione di eventi distruttivi. Il progetto EARLI, finanziato dall’UE, utilizzerà l’intelligenza artificiale per individuare deboli segnali sismici precoci, al fine di velocizzare le allerte precoci e di studiare la possibilità di prevedere i terremoti. Nello specifico, il progetto implementerà un approccio di allerta precoce basato su un segnale recentemente scoperto causato dalla perturbazione del campo gravitazionale generato da un terremoto. Tale segnale ha un ordine di grandezza 6 volte più piccolo rispetto alle onde sismiche (il che ne limita fortemente l’individuazione mediante le tecniche standard), ma precede queste ultime. Il secondo obiettivo, più di carattere esplorativo, sarà quello di adattare l’algoritmo di IA sviluppato per cercare segnali ancora più precoci che precedono la formazione di grandi terremoti.

Obiettivo

Earthquakes caused nearly one million fatalities in the last two decades. The hazardous nature of earthquakes is largely due to their unpredictability. The question of whether this unpredictability is ontological (i.e. earthquakes are a chaotic phenomenon that physics cannot predict) or a consequence of our incapacity to model them is still open. In the first case, one may never hope to predict earthquakes and efforts should be focused towards developing early-warning approaches so that the population can prepare for imminent shaking and tsunami. In the second case, earthquake prediction becomes theoretically achievable. In both cases, Artificial Intelligence (AI) may lead to giant steps in anticipating destructive events. I propose here to use AI to identify weak early seismic signals to both speed up early-warning and explore the possibility of earthquake prediction. The first part of the project will be devoted to implementing an early-warning approach not based on P-waves as all current systems but on an earlier signal recently identified. This signal is due to the perturbation of the gravity field generated by an earthquake – which propagates at the speed of light – but is ~6 orders of magnitude smaller than seismic waves, strongly limiting its detection with standard techniques. AI has proven very efficient at detecting low-amplitude signals. I will implement an AI algorithm to systematically detect gravity perturbations generated by magnitude > 7 earthquakes and rapidly estimate from them the location and magnitude of the earthquake. Though the existence of earthquake precursors (i.e. signals preceding the origin of earthquakes themselves) is hypothetical, AI represents a new prowerful mean to discover them. In the second part of the project, I will adapt the AI algorithm developed in the first part to search for earthquake precursors.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-STG - Starting Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2020-STG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

INSTITUT DE RECHERCHE POUR LE DEVELOPPEMENT
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 499 518,00
Indirizzo
BOULEVARD DE DUNKERQUE 44 CS 90009
13572 Marseille
Francia

Mostra sulla mappa

Regione
Provence-Alpes-Côte d’Azur Provence-Alpes-Côte d’Azur Bouches-du-Rhône
Tipo di attività
Research Organisations
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 499 518,00

Beneficiari (1)

Il mio fascicolo 0 0