Obiettivo
Future successful development of information technologies is strongly dependent on the continuation of Moore's law towards nano-electronics. According to the ITRS roadmap, the mainstream memory devices, e.g. DRAMs and Flash memories, will face a technological brick-wall around 2006. An ideal memory device for the coming nano-electronics era would be a silicon-technology compatible flash single-electron memory device. The aim of this project is to optimise and fabricate such nano-flash single-electron memory devices and the associated circuits using a fully MOS-compatible SOI technology. The key innovative aspects of this project rely on device design optimised for persistent operation and low voltage programming, and on a simple self-aligned SOI-MOS process. This project gathers together 3 university partners and an industrial partner interested in the high potential of this study. Future successful development of information technologies is strongly dependent on the continuation of Moore's law towards nano-electronics. According to the ITRS roadmap, the mainstream memory devices, e.g. DRAMs and Flash memories, will face a technological brick-wall around 2006. An ideal memory device for the coming nano-electronics era would be a silicon-technology compatible flash single-electron memory device. The aim of this project is to optimise and fabricate such nano-flash single-electron memory devices and the associated circuits using a fully MOS-compatible SOI technology. The key innovative aspects of this project rely on device design optimised for persistent operation and low voltage programming, and on a simple self-aligned SOI-MOS process. This project gathers together 3 university partners and an industrial partner interested in the high potential of this study.
OBJECTIVES
The critical points that currently limit performances are lithography resolution, process optimisation, and fine characterisation. The objectives of SASEM are to address these points and go from the existing laboratory single-electron-memory (SEM) device to memory circuit demonstration. In order to fully exploit the potential of our SEM device, all aspects from physics and technology to circuit architecture will be addressed. Detailed objectives: Process simulation using appropriate models for small devices and anisotropic oxidation. Device simulation and design, process optimisation for best reproducibility and robustness to process parameter fluctuations, and best device characteristics. Tests and optimisation of critical process steps. Memory device fabrication. Physical characterisation. Electrical characterisation (programming and readout, retention time). Design and fabrication of memory cells. Demonstration of a nano-flash SEM circuit.
DESCRIPTION OF WORK
The different components are grouped in the following workpackages (WP1 to WP3) and tasks. WP1: Design and simulation:
1.1 Development of specific process simulation tools that will allow device process optimisation. If necessary, 3D simulation will be considered on year 2;
1.2 Device process optimisation based on inputs from 1.1 as well as feedbacks from device characterization (3.1 and 3.3). Technological parameters will be optimised to produce the best device in terms of reproducibility and robustness to process parameter fluctuations, as well as device characteristics;
1.3 Design of a programming/readout circuit using the SOI analog circuit expertise of G1. Design improvement is based on memory cell characterization (3.4);
1.4 Design of memory circuit based on output from task 1.3. Feedback from memory circuit characterization (3.5) will drive design optimisation.
WP2: Fabrication: 2.1 Optimisation of the key process steps: lithography and oxidation. Shared by CO1 (oxidation) and CR3 (lithography). Physical characterization (3.1) will drive the present task through continuous feedbacks;
2.2 Based on inputs from tasks 1.2 and 2.1 task 2.2 is devoted to memory device fabrication. CO1 and CR3 will share process steps according to specific expertises and equipments;
2.3 Memory cell fabrication;
2.4 Memory circuit fabrication based on input from task 1.4.
WP3: Characterization;
3.1 Physical characterization using various investigation tools (SEM, AFM, FIB). Device process optimisation;
3.2 Development of specific device/circuit characterization tools to provide detailed investigation of memory device characteristics;
3.3 to 3.5: Devices, memory cells and memory circuits characterization, respectively. Provide continuous feedback to tasks 1.2 1.3 and 1.4.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- ingegneria e tecnologia ingegneria elettrica, ingegneria elettronica, ingegneria informatica ingegneria elettronica elettronica analogica
- scienze naturali scienze chimiche elettrochimica elettrolisi
- scienze naturali informatica e scienze dell'informazione software software applicativi software di simulazione
- ingegneria e tecnologia nanotecnologia nanoelettronica
- scienze sociali legge
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Dati non disponibili
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Coordinatore
1348 LOUVAIN-LA-NEUVE
Belgio
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.